Colocalizing Subcategories and Cosupport
نویسنده
چکیده
The Hom closed colocalizing subcategories of the stable module category of a finite group are classified. Along the way, the colocalizing subcategories of the homotopy category of injectives over an exterior algebra, and the derived category of a formal commutative differential graded algebra, are classified. To this end, and with an eye towards future applications, a notion of local homology and cosupport for triangulated categories is developed, building on earlier work of the authors on local cohomology and support.
منابع مشابه
Stratification and Π-cosupport: Finite Groups
We introduce the notion of π-cosupport as a new tool for the stable module category of a finite group scheme. In the case of a finite group, we use this to give a new proof of the classification of tensor ideal localising subcategories. In a sequel to this paper, we carry out the corresponding classification for finite group schemes.
متن کاملStratification for Module Categories of Finite Group Schemes
The tensor ideal localising subcategories of the stable module category of all, including infinite dimensional, representations of a finite group scheme over a field of positive characteristic are classified. Various applications concerning the structure of the stable module category and the behavior of support and cosupport under restriction and induction are presented.
متن کاملLocalization in Coalgebras. Stable Localizations and Path Coalgebras
We study localizing and colocalizing subcategories of a comodule category of a coalgebra C over a field, using the correspondence between localizing subcategories and equivalence classes of idempotent elements in the dual algebra C∗. In this framework, we give a useful description of the localization functor by means of the Morita–Takeuchi context defined by the quasi-finite injective cogenerat...
متن کاملAre All Localizing Subcategories of Stable Homotopy Categories Coreflective?
We prove that, in a triangulated category with combinatorial models, every localizing subcategory is coreflective and every colocalizing subcategory is reflective if a certain large-cardinal axiom (Vopěnka’s principle) is assumed true. It follows that, under the same assumptions, orthogonality sets up a bijective correspondence between localizing subcategories and colocalizing subcategories. Th...
متن کاملSubcategories of topological algebras
In addition to exploring constructions and properties of limits and colimits in categories of topological algebras, we study special subcategories of topological algebras and their properties. In particular, under certain conditions, reflective subcategories when paired with topological structures give rise to reflective subcategories and epireflective subcategories give rise to epireflective s...
متن کامل